Respuesta :

The radias would be 14 and the volume would be 11507.924943185202. I'm not that sure on these. Tell me if these are correct plz.

Answer:

Radius of the sphere is 14 cm and Volume of the sphere is 1498.7 cm³.

Step-by-step explanation:

Given Perimeter of the largest cross section of the sphere = 88 cm.

We have to find Radius of the sphere and Volume of the sphere.

We know that Largest Cross section of the sphere is a circle whose radius is same as of sphere.

let r be the radius of cross sectional circle or sphere.

Now,

Circumference of circle = 88 cm

2πr = 88

[tex]r=88\times\frac{7}{2\times22}[/tex]

r = 2 × 7

r = 14 cm

Volume of the sphere = [tex]\frac{4}{3}\pi r^3[/tex]

                                    =  [tex]\frac{4}{3}\times\frac{22}{7}\times14^3[/tex]

                                    =  [tex]\frac{4}{3}\times22\times14^2\times2[/tex]

                                    =  11498.7 cm³

Therefore, Radius of the sphere is 14 cm and Volume of the sphere is 1498.7 cm³.