Respuesta :
You need to factor the numerator and denominator...
(2x^2+4x-2x-4)/(2x^2-2x-2x+2)
(2x(x+2)-2(x+2))/(2x(x-1)-2(x-1))
((2x-2)(x+2))/((2x-2)(x-1)) so the (2x-2)s cancel out leaving
(x+2)/(x-1)
(2x^2+4x-2x-4)/(2x^2-2x-2x+2)
(2x(x+2)-2(x+2))/(2x(x-1)-2(x-1))
((2x-2)(x+2))/((2x-2)(x-1)) so the (2x-2)s cancel out leaving
(x+2)/(x-1)
Answer:
[tex]\frac{x+2}{x-1}[/tex]
Step-by-step explanation:
[tex]\frac{(2x^2+2x-4)}{(2x^2-4x+2)}[/tex]
Factor top and bottom separately
[tex]2x^2+2x-4[/tex]
[tex]2x^2+4x-2x-4[/tex]
Make two groups and take out GCf
[tex]2x(x+2)-2(x+2)[/tex]
(x+2)(2x-2)
We factor the denominator
[tex]2x^2-4x+2[/tex]
[tex]2x^2-2x-2x+2[/tex]
Make two groups and take out GCf
[tex]2x(x-1)-2(x-1)[/tex]
(x-1)(2x-2)
[tex]\frac{(2x^2+2x-4)}{(2x^2-4x+2)}=\frac{(x+2)(2x-2)}{(x-1)(2x-2)}[/tex]
2x-2 cancel out
So answer is [tex]\frac{x+2}{x-1}[/tex]