Respuesta :

Answer:

All real  numbers

Step-by-step explanation:

We are given that a cube root  function

[tex]f(x)=\sqrt[3]{x}[/tex]

We have to find the domain of given function.

The given function defined for all real values of x.

[tex]f(0)=0[/tex]

[tex]f(-1)=(-1)^{\frac{1}{3}}=-1[/tex]

[tex]f(-2)=(-2)^{\frac{1}{3}}=-1.259[/tex]

Therefore, domain of given function is the set of all real numbers.

Answer: All real  numbers.

The domain of a function is the set of all input values.

The domain of [tex]\mathbf{f(x) = \sqrt[3]{x}}[/tex] is all real values

The function is given as:

[tex]\mathbf{f(x) = \sqrt[3]{x}}[/tex]

The above function is a cube root function.

A cube root function is true for all real values.

This means that:

  • The function is true for positive values
  • The function is true for negative values
  • The function is true, for 0

Hence, the domain of the function is all real values

Read more about domain at:

https://brainly.com/question/4767962