Respuesta :
Answer:
b. $1,937.12
Step-by-step explanation:
Given,
Purchasing price of house = $345,000,
Down payment = 10 % of the purchasing price
[tex]=\frac{345000\times 10}{100}[/tex]
[tex]=\frac{34500000}{100}[/tex]
[tex]=\$34500[/tex]
Thus, the principal value of the loan, P.V. = Purchasing price - Down payment
= $345,000 - $34500
= $ 310500
Also, the annual rate of percentage = 6.375% = 0.06375,
⇒ The rate per month, r= [tex]\frac{0.06375}{12}[/tex]
Time, n = 30 years = 360 months
We know that,
The monthly payment of a loan is,
[tex]P=\frac{r(P.V.)}{1-(1+r)^{-n}}[/tex]
[tex]=\frac{\frac{0.06375}{12}(310500)}{1-(1+\frac{0.06375}{12})^{-360}}[/tex]
[tex]=1937.11603586\approx \$1937.12[/tex]
⇒ Option B is correct.