Respuesta :

since those two triangles are similar by AA
then use proportions to get "x"

thus   [tex]\bf \cfrac{x+4}{16}=\cfrac{x-08}{WU}[/tex]   hmmm wait just a second? what the dickens is WU anyway?

well, let's take a look at the triangle on the right-side
is a right-triangle, has a 90° angle

so, just use the pythagorean theorem to get WU

[tex]\bf c^2=a^2+b^2\implies \sqrt{c^2-a^2}=b\qquad \begin{cases} c=WY\\ a=UY\\ b=WU \end{cases}\\\\ -----------------------------\\\\ \sqrt{(WY)^2-(UY)^2}=WU[/tex]

which will give  you [tex]\bf \cfrac{x+4}{16}=\cfrac{x-08}{\boxed{\sqrt{(WY)^2-(UY)^2}}}[/tex]

solve for "x"