Respuesta :
Horizontal, v = 52/2 = 26 m/s
Vertical, using s = vt - (1/2)gt^2
v = s/t + (1/2)gt = 37.3 m/s
max height is achieved when vertical velocity is zero
so using v(final) = v (initial) - gt
v(final) = 0 & v(initial) = 37.3
t = v(initial)/g = 3.8 sec
hence D = v(horiz) x t = 26 × 3.8 = 98.8m
Vertical, using s = vt - (1/2)gt^2
v = s/t + (1/2)gt = 37.3 m/s
max height is achieved when vertical velocity is zero
so using v(final) = v (initial) - gt
v(final) = 0 & v(initial) = 37.3
t = v(initial)/g = 3.8 sec
hence D = v(horiz) x t = 26 × 3.8 = 98.8m
The horizontal and vertical component of the projectile and the displacement at the maximum height is required.
The horizontal component is 26 m/s the vertical component is 37.31 m/s and the displacement at maximum height is 98.9 m.
[tex]a_y=g[/tex] = Acceleration due to gravity = [tex]-9.81\ \text{m/s}^2[/tex]
d = Horizontal displacement at h = 55 m is 52 m.
h = Vertical height from the ground
[tex]a_x[/tex] = Acceleration in the x axis = 0
t = Time = 2 s
The equations of projectile motion are used here
[tex]d=u_xt+\dfrac{1}{2}a_xt^2\\\Rightarrow 52=u_x\times2+\dfrac{1}{2}\times 0\times 2^2\\\Rightarrow u_x=\dfrac{52}{2}=26\ \text{m/s}[/tex]
The horizontal component is [tex]26\ \text{m/s}[/tex]
[tex]h=u_yt+\dfrac{1}{2}a_yt^2\\\Rightarrow u_y=\dfrac{h-\dfrac{1}{2}a_yt^2}{t}\\\Rightarrow u_y=\dfrac{55-\dfrac{1}{2}\times(-9.81)\times 2^2}{2}\\\Rightarrow u_y=37.31\ \text{m/s}[/tex]
The vertical component is [tex]37.31\ \text{m/s}[/tex]
[tex]d=\dfrac{u^2\sin2\theta}{2g}\\\Rightarrow d=\dfrac{u^22\sin\theta\cos\theta}{2g}\\\Rightarrow d=\dfrac{u_xu_y}{g}\\\Rightarrow d=\dfrac{26\times 37.31}{9.81}\\\Rightarrow d=98.9\ \text{m}[/tex]
The horizontal displacement at maximum height is [tex]98.9\ \text{m}[/tex].
Learn more:
https://brainly.com/question/3368
https://brainly.com/question/14304606