Answer:
- [tex]log\ (log\ 2)/\ log\ 2[/tex] or ≈ - 1.73
------------------------------
Solve in below steps, using log and exponent rules:
- [tex]2^{3^x}=10^{6^x}[/tex] Given
- [tex]log\ 2^{3^x}=log\ 10^{6^x}[/tex] Log both sides
- [tex]3^x\ log\ 2=6^x\ log\ 10[/tex] Log of power rule
- [tex]3^x\ log\ 2=6^x[/tex] log 10 = 1
- [tex]3^x\ log\ 2=(3*2)^x[/tex] Power of the product rule
- [tex]3^x\ log\ 2=3^x*2^x[/tex] Cancel 3ˣ on both sides
- [tex]log\ 2=2^x[/tex] Log both sides
- [tex]log\ (log\ 2)=x\ log\ 2[/tex] Divide both sides by log 2
- [tex]x=log\ (log\ 2)/\ log\ 2[/tex] Answer