1god
contestada

What is the value of x in the equation: 2^(3^x) = 10^(6^x) ?
____________________
False answer will be REPORTED immediately. Do not waste your time if you do not have sufficient knowledge.

Respuesta :

Answer:

  • [tex]log\ (log\ 2)/\ log\ 2[/tex]   or ≈ - 1.73

------------------------------

Solve in below steps, using log and exponent rules:

  • [tex]2^{3^x}=10^{6^x}[/tex]                                             Given
  • [tex]log\ 2^{3^x}=log\ 10^{6^x}[/tex]                                  Log both sides
  • [tex]3^x\ log\ 2=6^x\ log\ 10[/tex]                              Log of power rule
  • [tex]3^x\ log\ 2=6^x[/tex]                                         log 10 = 1
  • [tex]3^x\ log\ 2=(3*2)^x[/tex]                                 Power of the product rule
  • [tex]3^x\ log\ 2=3^x*2^x[/tex]                                  Cancel 3ˣ on both sides
  • [tex]log\ 2=2^x[/tex]                                              Log both sides
  • [tex]log\ (log\ 2)=x\ log\ 2[/tex]                              Divide both sides by log 2
  • [tex]x=log\ (log\ 2)/\ log\ 2[/tex]                            Answer