Respuesta :

To find the equation that does not belong with the other three we have to solve each equation.

Given the equation:

[tex]4\cdot x\cdot7=56[/tex]

Dividing by 4 at both sides:

[tex]\begin{gathered} \frac{4\cdot x\cdot7}{4}=\frac{56}{4} \\ x\cdot7=14 \end{gathered}[/tex]

7:

[tex]\begin{gathered} \frac{x\cdot7}{7}=\frac{14}{7} \\ x=2 \end{gathered}[/tex]

[tex]5\cdot2\cdot x=40[/tex]

Simplifying on the left:

[tex]10\cdot x=40[/tex]

10:

[tex]\begin{gathered} \frac{10\cdot x}{10}=\frac{40}{10} \\ x=4 \end{gathered}[/tex]

:

[tex]x\cdot3\cdot9=54[/tex]

[tex]x\cdot27=54[/tex]

27:

[tex]\begin{gathered} \frac{x\cdot27}{27}=\frac{54}{27} \\ x=2 \end{gathered}[/tex]

[tex]4\cdot x\cdot5=40[/tex]

4 :

[tex]\begin{gathered} \frac{4\cdot x\cdot5}{4}=\frac{40}{4} \\ x\cdot5=10 \end{gathered}[/tex]

5

[tex]\begin{gathered} \frac{x\cdot5}{5}=\frac{10}{5} \\ x=2 \end{gathered}[/tex]

In consequence, the equation that does not belong with the other three is:

[tex]5\cdot2\cdot x=40[/tex]

because its solution, 4, is different from the solution to the other equations (2).

If we change the 5 in the equation by a 10 and solve the equation we get:

[tex]\begin{gathered} 10\cdot2\cdot x=40 \\ \frac{10\cdot2\cdot x}{10}=\frac{40}{10} \\ 2\cdot x=4 \\ \frac{2\cdot x}{2}=\frac{4}{2} \\ x=2 \end{gathered}[/tex]

And now the equation (with a 10) belongs with the other three