Respuesta :

The given expression is,

[tex](3y^2-1)(2y^2-5y+8)[/tex]

Using distributive property( A (B+C)=AB+BC),

[tex](3y^2-1)(2y^2-5y+8)=3y^2(2y^2-5y+8)-1(2y^2-5y+8)[/tex]

Again using distributive property in RHS of above equation,

[tex]\begin{gathered} (3y^2-1)(2y^2-5y+8)=3y^2\times2y^2+3y^2\times(-5y)+3y^2\times8)-2y^2+5y-8 \\ (As\text{ }x^ax^b=x^{a+b}) \\ =6y^4-15y^3+24y^2-2y^2+5y-8 \\ =6y^4-15y^3+22y^2+5y-8 \end{gathered}[/tex]

Therefore, the simplified expression is,

[tex]6y^4-15y^3+22y^2+5y-8[/tex]