Respuesta :

Given

[tex]S=\mleft\lbrace1,2,3,4,5,6,7,8,9\mright\rbrace[/tex]

by selecting two numbers from S, the number of possible outcomes is

[tex]n(S)=9\times9=81[/tex]

Let E be the event that selecting two numbers randomly and their sum is 12 with replacement.

[tex]E=\lbrack(3,9),(4,8),(5,7),(6,6),(7,5),(8,4),(9,3)\}[/tex][tex]n(E)=7[/tex]

The probability is

[tex]P(E)=\frac{n(E)}{n(S)}[/tex]

Substitute values, we get

h is

[tex]P(E)=\frac{7}{81}[/tex]

b)without replacement

Areplacementout

[tex]A=\mleft\lbrace(3,9\mright),(4,8),(5,7),(7,5),(8,4),(9,3)\}[/tex][tex]n(A)=6[/tex]

[tex]P(A)=\frac{n(A)}{n(S)}[/tex]

Substitute the values, we get

[tex]P(A)=\frac{6}{81}=\frac{2}{27}[/tex]

The probability that the sum is 12 if selecting two numbers without replacement

[tex]P(A)=\frac{2}{27}[/tex]