Respuesta :

Answer:

[tex]\frac{1}{2}\cdot z^2[/tex] is the required equivalent expression.

Step-by-step explanation:

We have  been given an expression:

[tex](4z)^{-3}\cdot (2z)^5[/tex]

First open the parenthesis and simplify we will get:

[tex]\frac{1}{4^3\cdot z^3}\cdot 2^5\cdot z^5[/tex]

[tex]\frac{1}{64z^3}\cdot 32z^5[/tex]

On simplification by dividing 64 by 32

[tex]\frac{1}{2\cdot z^3}\cdot z^5[/tex]

When positive power changes its position from denominator to numerator its sign changes and vice-versa.

[tex]\frac{1}{2}\cdot z^{5-3}[/tex]

[tex]\frac{1}{2}\cdot z^2[/tex] is the required equivalent expression.


Answer:

Equivalent expression is[tex]\frac{1}{2}\cdot z^2 [/tex].

Step-by-step explanation:

Given: [tex](4z)^{-3}[/tex]×[tex](2z)^{5}[/tex]

To find: Which expression is equivalent to the one shown below.

Solution: We have given that  [tex](4z)^{-3}[/tex]×[tex](2z)^{5}[/tex].

By the negative exponent rule [tex]a^{-m}[/tex]=[tex]\frac{1}{a^{m} }[/tex].

[tex](4z)^{-3}[/tex]*[tex](2z)^{5}[/tex] =

[tex](2z)^{5}[/tex] *[tex]\frac{1}{(4z)^{3} }[/tex]

We got [tex]\frac{1}{(4z)^{3} }[/tex]*[tex](2z)^{5}[/tex].

On removing parenthesis

[tex]\frac{1}{64z^3}\cdot 32z^5[/tex].

On dividing 64 by 32

[tex]\frac{1}{2\cdot z^3}\cdot z^5[/tex].

By the quotient rule of exponent

[tex]\frac{a^{m} }{a^{n}}[/tex] = [tex]a^{m-n}[/tex].

[tex]\frac{1}{2}\cdot z^{5-3} [/tex].

[tex]\frac{1}{2}\cdot z^2 [/tex].

Therefore, Equivalent expression is [tex]\frac{1}{2}\cdot z^2 [/tex].