Respuesta :

Answer:

[tex]5\frac{2}{3}\ mph[/tex]

Step-by-step explanation:

we know that

The speed is equal to divide the distance by the time

Let

x------> the time in hours

y-----> the distance in miles

s-----> the speed in mph

[tex]s=\frac{y}{x}[/tex]

In this problem we have

[tex]x=\frac{3}{4}\ hours[/tex]

[tex]y=4\frac{1}{4}\ miles[/tex]

Convert to an improper fraction

[tex]4\frac{1}{4}\ miles=\frac{4*4+1}{4}=\frac{17}{4}\ miles[/tex]

Find the speed

[tex]s=\frac{(17/4)}{(3/4)}=\frac{17}{3}\ mph[/tex]

convert to mixed number

[tex]\frac{17}{3}\ mph=\frac{15}{3}+\frac{2}{3}=5+\frac{2}{3}=5\frac{2}{3}\ mph[/tex]

Answer:

Option (d) is correct.

Brain is running at the speed of [tex]5\frac{2}{3}[/tex] miles per hour.

Step-by-step explanation:

Given: Brian ran [tex]4\frac{1}{4}[/tex] miles in [tex]\frac{3}{4}[/tex] of an hour.

we have to find how fast Brian running.

Consider the given data

Brian ran [tex]4\frac{1}{4}[/tex] miles in [tex]\frac{3}{4}[/tex] of an hour.

Time = [tex]\frac{3}{4}[/tex] of an hour that is [tex]\frac{3}{4}[/tex] hour

And distance is  [tex]4\frac{1}{4}[/tex] miles =[tex]\frac{17}{4}[/tex] miles

We know, [tex]speed=\frac{distance}{time}[/tex]

Substitute, we have,

[tex]Speed=\frac{17}{4}\div \frac{3}{4}[/tex]

Apply fraction rule, [tex]\quad \frac{a}{b}\div \frac{c}{d}=\frac{a}{b}\times \frac{d}{c}[/tex]

[tex]=\frac{17}{4}\times \frac{4}{3}[/tex]

Simplify, we have,

[tex]=\frac{17}{3}=5\frac{2}{3}[/tex]

Thus, Brain is running at the speed of [tex]5\frac{2}{3}[/tex] miles per hour.