Respuesta :
Answer:
[tex]5\frac{2}{3}\ mph[/tex]
Step-by-step explanation:
we know that
The speed is equal to divide the distance by the time
Let
x------> the time in hours
y-----> the distance in miles
s-----> the speed in mph
[tex]s=\frac{y}{x}[/tex]
In this problem we have
[tex]x=\frac{3}{4}\ hours[/tex]
[tex]y=4\frac{1}{4}\ miles[/tex]
Convert to an improper fraction
[tex]4\frac{1}{4}\ miles=\frac{4*4+1}{4}=\frac{17}{4}\ miles[/tex]
Find the speed
[tex]s=\frac{(17/4)}{(3/4)}=\frac{17}{3}\ mph[/tex]
convert to mixed number
[tex]\frac{17}{3}\ mph=\frac{15}{3}+\frac{2}{3}=5+\frac{2}{3}=5\frac{2}{3}\ mph[/tex]
Answer:
Option (d) is correct.
Brain is running at the speed of [tex]5\frac{2}{3}[/tex] miles per hour.
Step-by-step explanation:
Given: Brian ran [tex]4\frac{1}{4}[/tex] miles in [tex]\frac{3}{4}[/tex] of an hour.
we have to find how fast Brian running.
Consider the given data
Brian ran [tex]4\frac{1}{4}[/tex] miles in [tex]\frac{3}{4}[/tex] of an hour.
Time = [tex]\frac{3}{4}[/tex] of an hour that is [tex]\frac{3}{4}[/tex] hour
And distance is [tex]4\frac{1}{4}[/tex] miles =[tex]\frac{17}{4}[/tex] miles
We know, [tex]speed=\frac{distance}{time}[/tex]
Substitute, we have,
[tex]Speed=\frac{17}{4}\div \frac{3}{4}[/tex]
Apply fraction rule, [tex]\quad \frac{a}{b}\div \frac{c}{d}=\frac{a}{b}\times \frac{d}{c}[/tex]
[tex]=\frac{17}{4}\times \frac{4}{3}[/tex]
Simplify, we have,
[tex]=\frac{17}{3}=5\frac{2}{3}[/tex]
Thus, Brain is running at the speed of [tex]5\frac{2}{3}[/tex] miles per hour.