Respuesta :

Answer:

The correct option is B

Step-by-step explanation:

Given information: ∠F=32°,∠D=54° and DF=18m.

According to the angle sum property of triangle, the sum interior angles of a triangle is 180°.

Using angle sum property, we get

[tex]\angle D+\angle E+\angle F=180^{\circ}[/tex]

[tex]54^{\circ}+\angle E+32^{\circ}=180^{\circ}[/tex]

[tex]\angle E+86^{\circ}=180^{\circ}[/tex]

[tex]\angle E=180^{\circ}-86^{\circ}[/tex]

[tex]\angle E=94^{\circ}[/tex]

Law of sine:

[tex]\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}[/tex]

Using law of sine we get

[tex]\frac{\sin D}{d}=\frac{\sin E}{e}[/tex]

[tex]\frac{\sin D}{EF}=\frac{\sin E}{DF}[/tex]

[tex]\frac{\sin 54^{\circ}}{EF}=\frac{\sin 94^{\circ}}{18}[/tex]

[tex]\frac{0.809016994375}{EF}=\frac{0.99756405026}{18}[/tex]

Cross multiply,

[tex]0.809016994375\times 18=0.99756405026\times EF[/tex]

Divide both sides by 0.99756405026.

[tex]EF=14.5978655656[/tex]

[tex]EF\approx 14.6[/tex]

The value of EF is 14.6 m. Therefore the correct option is B.