let us, do the right-hand-side
[tex]\bf csc(x)+cot(x)\qquad
\begin{cases}
cot(\theta)=\cfrac{cos(\theta)}{sin(\theta)}
\\\\
% cosecant
csc(\theta)=\cfrac{1}{sin(\theta)}
\end{cases}\qquad thus
\\\\\\
\cfrac{1}{sin(x)}+\cfrac{cos(x)}{sin(x)}\implies \cfrac{1+cos(x)}{sin(x)}
\\\\\\
thus\implies 1+\cfrac{cos(x)}{sin(x)}\ne csc(x)+cot(x)[/tex]