Answer:
[tex]\frac{2x^{-4}}{3xy}=\frac{2}{3x^5y}[/tex]
Step-by-step explanation:
Simplify: 2x^-4/3xy
[tex]\frac{2x^{-4}}{3xy}[/tex]
To simplify it we use exponential property
[tex]\frac{a^m}{a^n} =a^{m-n}[/tex]
we can simplify x
[tex]\frac{x^{-4}}{x^1} =x^{-4-1}=x^{-5}[/tex]
[tex]\frac{2x^{-4}}{3xy}=\frac{2x^{-5}}{3y}[/tex]
Now we take reciprocal to remove negative. we move x^-5 to the denominator
[tex]\frac{2x^{-4}}{3xy}=\frac{2}{3x^5y}[/tex]