Respuesta :

Answer:

[tex]\frac{2x^{-4}}{3xy}=\frac{2}{3x^5y}[/tex]

Step-by-step explanation:

Simplify: 2x^-4/3xy

[tex]\frac{2x^{-4}}{3xy}[/tex]

To simplify it we use exponential property

[tex]\frac{a^m}{a^n} =a^{m-n}[/tex]

we can simplify x

[tex]\frac{x^{-4}}{x^1} =x^{-4-1}=x^{-5}[/tex]

[tex]\frac{2x^{-4}}{3xy}=\frac{2x^{-5}}{3y}[/tex]

Now we take reciprocal to remove negative. we move x^-5 to the denominator

[tex]\frac{2x^{-4}}{3xy}=\frac{2}{3x^5y}[/tex]