Find the measure of ∠C to the nearest degree.

Answer:
[tex]\angle C=28.95502437$^{\circ} \approx29 $^{\circ}[/tex]
Step-by-step explanation:
Let's call the missing side c. And let's find it using pythagorean theorem:
[tex]b^2=c^2+a^2[/tex]
Where:
[tex]a=7\\\\and\\\\b=8[/tex]
Solving for c:
[tex]c^2=8^2-7^2\\\\c^2=64-49\\\\c^2=15\\\\c=\sqrt{15}[/tex]
Using law of sines:
[tex]\frac{a}{sin(A)} =\frac{b}{sin(B)} =\frac{c}{sin(C)}[/tex]
Where:
[tex]B=90[/tex]
Solving for C:
[tex]b*sin(C)=c*sin(B)\\\\8sin(C)=\sqrt{15} sin(90)\\\\sin(C)=\frac{\sqrt{15} }{8} \\\\C=arcsin(\frac{\sqrt{15} }{8} )\\\\C=28.95502437$^{\circ} \approx 29$^{\circ}[/tex]