Respuesta :

Check the picture below.

[tex]~\hfill \stackrel{\textit{\large distance between 2 points}}{d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2}}~\hfill~ \\\\[-0.35em] ~\dotfill\\\\ A(\stackrel{x_1}{-4}~,~\stackrel{y_1}{0})\qquad B(\stackrel{x_2}{2}~,~\stackrel{y_2}{3}) ~\hfill AB=\sqrt{(~~ 2- (-4)~~)^2 + (~~ 3- 0~~)^2} \\\\\\ ~\hfill AB=\sqrt{( 6 )^2 + ( 3)^2}\implies \boxed{AB=\sqrt{45}}[/tex]

[tex]B(\stackrel{x_1}{2}~,~\stackrel{y_1}{3})\qquad C(\stackrel{x_2}{6}~,~\stackrel{y_2}{0}) ~\hfill BC=\sqrt{(~~ 6- 2~~)^2 + (~~ 0- 3 ~~)^2} \\\\\\ ~\hfill BC=\sqrt{( 4)^2 + ( -3)^2}\implies \boxed{BC=5} \\\\\\ C(\stackrel{x_1}{6}~,~\stackrel{y_1}{0})\qquad D(\stackrel{x_2}{0}~,~\stackrel{y_2}{-3}) ~\hfill CD=\sqrt{(~~ 0- 6~~)^2 + (~~ -3- 0~~)^2} \\\\\\ ~\hfill CD=\sqrt{( -6)^2 + ( -3)^2}\implies \boxed{CD=\sqrt{45}}[/tex]

[tex]D(\stackrel{x_1}{0}~,~\stackrel{y_1}{-3})\qquad A(\stackrel{x_2}{-4}~,~\stackrel{y_2}{0}) ~\hfill DA=\sqrt{(~~ -4- 0~~)^2 + (~~ 0- (-3)~~)^2} \\\\\\ ~\hfill DA=\sqrt{( -4)^2 + ( 3)^2}\implies \boxed{DA=5} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{\LARGE Perimeter}}{\sqrt{45}~~ + ~~5~~ + ~~\sqrt{45}~~ + ~~5 ~~ \approx ~~ \text{\LARGE 23.42}}[/tex]

Ver imagen jdoe0001