A normal distribution has a mean of 142 and a standard deviation of 16. What is the probability that a randomly selected value lies between 142 and 174? A) 0.22 B) 0.34 C) 0.48 D) 0.54

Respuesta :

[tex]\mathbb P(142<X<174)=\mathbb P\left(\dfrac{142-142}{16}<\dfrac{X-142}{16}<\dfrac{174-142}{16}\right)=\mathbb P(0<Z<2)[/tex]

Approximately 95% of any normal distribution lies within two standard deviations of the mean, i.e. [tex]\mathbb P(-2<Z<2)\approx0.95[/tex]. Because the distribution is symmetric, you have [tex]\mathbb P(-2<Z<2)=2\mathbb P(0<Z<2)[/tex], so [tex]\mathbb P(0<Z<2)\approx\dfrac{0.95}2=0.475\approx0.48[/tex].