We'll consider that x > 0. By the Pythagorean trigonometric identity, we have:
[tex]\sin^2\theta+\cos^2\theta=1\\\\
\left(\dfrac{x}{9}\right)^2+\cos^2\theta=1\\\\
\dfrac{x^2}{81}+\cos^2\theta=1\\\\
\cos^2\theta=1-\dfrac{x^2}{81}\\\\
\cos^2\theta=\dfrac{81-x^2}{81}\\\\
\cos\theta=\pm\sqrt{\dfrac{81-x^2}{81}}\\\\\cos\theta=\pm\dfrac{\sqrt{81-x^2}}{9}[/tex] Since θ is in the 1st quadrant, [tex]\cos\theta\ \textgreater \ 0[/tex]. So: