Respuesta :
Answer:
A) A[p(t)] = 36πt²
B) 7234.56 square units
Step-by-step explanation:
Given functions:
[tex]\begin{cases}p(t)=6t \\ A(p)=\pi p^2 \end{cases}[/tex]
Part A
To find the area of the circle of spilled paint as a function of time, substitute the function p(t) into the given function A(p):
[tex]\begin{aligned}A(p) & = \pi p^2\\\\ \implies A[p(t)] & = \pi [p(t)]^2\\& = \pi (6t)^2\\& = \pi 6^2 t^2\\& = 36\pi t^2\end{aligned}[/tex]
Part B
Given
- t = 8 minutes
- π = 3.14
Substitute the given values into the equation for A[p(t)} found in part A:
[tex]\begin{aligned}A[p(8)] & = 36\pi t^2\\& = 36 \cdot 3.14 \cdot 8^2\\& = 36 \cdot 3.14 \cdot 64\\& = 113.04 \cdot 64\\& = 7234.56\:\: \sf square\:units\end{aligned}[/tex]
Therefore, the area of spilled paint after 8 minutes if 7234.56 square units.
A(p(t))
- π(6t)²
- π36t²
- 36t²π
#B
put t=8
A(p(t))
- 36π(8)²
- 36π(64)
- 7234.56units²