Respuesta :

The end behavior of the function f(x) = (x - 5)/(5x^3 - 2x^2 + 3) is f(x) ⇒  0 as x ⇒ ∝ and f(x) ⇒  0 as x ⇒ -∝

How to determine the end behaviors of the function?

The function is given as:

f(x) = (x - 5)/(5x^3 - 2x^2 + 3)

Next, we determine the limits of the function.

This is represented as:

lim x ⇒ ∝ and -∝ of f(x) = (x - 5)/(5x^3 - 2x^2 + 3)

For lim x ⇒ ∝, we have:

f(∝) = (∝ - 5)/(5(∝)^3 - 2(∝)^2 + 3)

Evaluate the exponents

f(∝) = (∝ - 5)/(5(∝) - 2(∝) + 3)

Evaluate the products

f(∝) = (∝ - 5)/(∝ - ∝ + 3)

Evaluate the sum and the difference

f(∝) = ∝/∝

Evaluate the quotient

f(∝) = 0

For lim x ⇒ -∝, we have:

f(-∝) = (-∝ - 5)/(5(-∝)^3 - 2(-∝)^2 + 3)

Evaluate the exponents

f(-∝) = (-∝ - 5)/(5(-∝) - 2(∝) + 3)

Evaluate the products

f(-∝) = (-∝ - 5)/(-∝ - ∝ + 3)

Evaluate the sum and the difference

f(-∝) = -∝/-∝

Evaluate the quotient

f(-∝) = 0

So, we have:

f(x) ⇒  0 as x ⇒ ∝ and f(x) ⇒  0 as x ⇒ -∝

Hence, the end behavior of the function f(x) = (x - 5)/(5x^3 - 2x^2 + 3) is f(x) ⇒  0 as x ⇒ ∝ and f(x) ⇒  0 as x ⇒ -∝

Read more about end behavior at

https://brainly.com/question/22257123

#SPJ1