The transformation of the odd function h(x) = [tex](-x)^{5}+12x[/tex], which is also an odd function is 1+h(x).
Given: [tex]h(x)=(-x)^{5} +12x[/tex] is an odd function.
Then, h(-x) = - h(x) as it is an odd function,
That is, LHS = h(-x) [tex](-(-x))^{5} +12(-x) = x^{5}-12x = - ( (-x)^{5} + 12x)[/tex] = RHS
Now, for [tex]h'(x) = 1+h(x) = 1+(-x)^{5} + 12(x)[/tex] ,
(where, h'(x) = transformation of h(x)),
=>LHS = [tex]1+h(-x)=1+(-(-x))^{5}-12(-x)=1+x^{5}+12x[/tex]
And, [tex]1-h(x)=1-((-x)^{5}-12x)=1+x^{5}+12x[/tex]
As 1 + h(-x) = 1 - h(x), the transformation h'(x) = 1 + h(x) is an odd function.
To learn more about odd function from the given link:
https://brainly.com/question/2284364
#SPJ4