Respuesta :

The surface area of the torus with radius 10, which can be represented parametrically is 40π²

Torus and its area can be defined parametrically as:

r(θ,ϕ)= ((10+cosϕ)cosθ, (10+cosϕ)sinθ, sinϕ),  0≤θ≤2π, 0≤ϕ≤2π.

First, we need to calculate the partial derivatives of

r:rθ=(−(10+cosϕ)sinθ,(10+cosϕ)cosθ,0)

 rϕ=(−sinϕcosθ,−sinϕsinθ,cosϕ)

rθ×rϕ=  ∣ i                                        j                                k|

             |−(10+cosϕ)sinθ       (10+cosϕ)cosθ               0|

            |−sinϕcosθ                  −sinϕsinθ               cosϕ∣

       =(10+cosϕ) (cosθcosϕi+ sinθcosϕ j+ cosϕk)

thus,

||(10+cosϕ)(cosθcosϕi+sinθcosϕj+cosϕk)||

             =(10+cosϕ) √(cosθcosϕ)²+(sinθcosϕ)²+(cosϕ)²

             =(10+cosϕ)√cos²θcos²ϕ+ sin²θcos²ϕ +sin²ϕ

             =(10+cosϕ)√cos²ϕ+sin²ϕ

             =10+cosϕ

the surface integral is given as:

S=∫∫(10+cosϕ) dϕ dθ , [0,2π]

=∫[10ϕ+sinϕ] [0,2π] dθ,  [0,2π]

=∫20πdθ,  [0,2π]

=(20πθ)  [0,2π]

=40π²

Therefore, 40π² is the surface area represented parametrically.

Learn to know more about finding the surface area on

https://brainly.com/question/16519513

#SPJ4