Simplify 10 times the square root of quantity 3 x end quantity plus 4 times the square root of quantity 3 x end quantity plus 5 times the square root of quantity 3 x end quantity. 9 times the square root of quantity 3 x end quantity 9 times the square root of quantity 6 x end quantity 19 times the square root of quantity 3 x end quantity 19 times the square root of quantity 9 x cubed

Respuesta :

[tex]\\ \rm\dashrightarrow10\sqrt{3x}+4\sqrt{3x}+5\sqrt{3x}+9\sqrt{3x}+9\sqrt{6x}+19\sqrt{3x}+19\sqrt{9x^3}[/tex]

[tex]\\ \rm\dashrightarrow (10+4+5+9+19)\sqrt{3x}+9\sqrt{6x}+19\sqrt{3^2x^2x}[/tex]

[tex]\\ \rm\dashrightarrow 47\sqrt{3x}+9\sqrt{2x}\sqrt{3x}+57x\sqrt{x}[/tex]

[tex]\\ \rm\dashrightarrow (47+9\sqrt{2x})\sqrt{3x}+57x\sqrt{x}[/tex]

Answer:

[tex]19\sqrt{3x}[/tex]

Step-by-step explanation:

Given expression:

[tex]10 \sqrt{3x}+4\sqrt{3x}+5\sqrt{3x}[/tex]

Given answer options:

  • [tex]9\sqrt{3x}[/tex]
  • [tex]9\sqrt{6x}[/tex]
  • [tex]19\sqrt{3x}[/tex]
  • [tex]19\sqrt{9x^3}[/tex]

To simplify the given expression, factor out [tex]\sqrt{3x}[/tex]:

[tex]\implies 10 \sqrt{3x}+4\sqrt{3x}+5\sqrt{3x}[/tex]

[tex]\implies \sqrt{3x}(10+4+5)[/tex]

Add the numbers in the parentheses:

[tex]\implies \sqrt{3x}(19)[/tex]

Rearrange to standard form:

[tex]\implies 19\sqrt{3x}[/tex]

Therefore, the answer is the third option.