Respuesta :
[tex]\\ \rm\dashrightarrow10\sqrt{3x}+4\sqrt{3x}+5\sqrt{3x}+9\sqrt{3x}+9\sqrt{6x}+19\sqrt{3x}+19\sqrt{9x^3}[/tex]
[tex]\\ \rm\dashrightarrow (10+4+5+9+19)\sqrt{3x}+9\sqrt{6x}+19\sqrt{3^2x^2x}[/tex]
[tex]\\ \rm\dashrightarrow 47\sqrt{3x}+9\sqrt{2x}\sqrt{3x}+57x\sqrt{x}[/tex]
[tex]\\ \rm\dashrightarrow (47+9\sqrt{2x})\sqrt{3x}+57x\sqrt{x}[/tex]
Answer:
[tex]19\sqrt{3x}[/tex]
Step-by-step explanation:
Given expression:
[tex]10 \sqrt{3x}+4\sqrt{3x}+5\sqrt{3x}[/tex]
Given answer options:
- [tex]9\sqrt{3x}[/tex]
- [tex]9\sqrt{6x}[/tex]
- [tex]19\sqrt{3x}[/tex]
- [tex]19\sqrt{9x^3}[/tex]
To simplify the given expression, factor out [tex]\sqrt{3x}[/tex]:
[tex]\implies 10 \sqrt{3x}+4\sqrt{3x}+5\sqrt{3x}[/tex]
[tex]\implies \sqrt{3x}(10+4+5)[/tex]
Add the numbers in the parentheses:
[tex]\implies \sqrt{3x}(19)[/tex]
Rearrange to standard form:
[tex]\implies 19\sqrt{3x}[/tex]
Therefore, the answer is the third option.