Answer:
The prism has a volume about 340 cubic centimeters larger than the cone.
Step-by-step explanation:
Cone
Formulas
[tex]\sf Surface\:area\:of\:a\:cone=\pi r \left(r+\sqrt{h^2+r^2}\right)[/tex]
[tex]\textsf{Volume of a cone}=\sf \dfrac{1}{3} \pi r^2 h[/tex]
where:
- r = radius of circular base
- h = height perpendicular to the base
Given:
Substitute the given values into the formulas:
[tex]\begin{aligned}\sf Surface\:area\:of\:cone & =\pi (3) \left(3+\sqrt{6^2+3^2}\right)\\ & = 3 \pi \left (3+\sqrt{36+9}\right)\\ & = 3\pi (3+\sqrt{45})\\ & = 3\pi(3+3\sqrt{5})\\ & = 91.5 \:\: \sf cm^2\:(1\:d.p.)\end{aligned}[/tex]
[tex]\begin{aligned}\textsf{Volume of cone} & =\dfrac{1}{3} \pi (3)^2 (6)\\& = \dfrac{54}{3} \pi \\ & = 18 \pi \\ & = 56.5\:\: \sf cm^3 \:(1 \: d.p.)\end{aligned}[/tex]
Prism
Formulas
[tex]\textsf{Surface area of a prism}=\textsf{Total area of all the sides}[/tex]
[tex]\textsf{Volume of a prism}=\sf \textsf{Area of base} \times height[/tex]
[tex]\textsf{Area of a triangle}=\sf \dfrac{1}{2} \times base \times height[/tex]
[tex]\textsf{Area of a rectangle}=\sf width \times length[/tex]
Given:
- Height of triangular base = 10 cm
- Base of triangular base = 8 cm
- Height of prism = 10 cm
Find the area of the triangular base of the prism:
[tex]\begin{aligned}\textsf{Area of the base} & = \dfrac{1}{2} \times 8 \times 10\\& = 40\:\: \sf cm^2\end{aligned}[/tex]
Find the third edge of the triangular base by using Pythagoras Theorem:
[tex]\begin{aligned}a^2+b^2 & = c^2\\\implies 8^2+10^2 & = c^2\\164 & = c^2\\c & = \sqrt{164}\\c & = 2\sqrt{41}\end{aligned}[/tex]
Use the found values and the formulas to find the surface area of volume of the prism:
[tex]\begin{aligned}\textsf{Surface area of prism} & = \sf 2\:triangles+3\:rectangles\\& = 2\left(40\right) + (10 \times 10)+(10 \times 8)+ (10 \times 2\sqrt{41})\\& = 80 + 100 + 80 + 20\sqrt{41}\\& = 388.1 \:\: \sf cm^2\:(1\:d.p.)\end{aligned}[/tex]
[tex]\begin{aligned}\textsf{Volume of prism} & = 40 \times 10\\& = 400\:\:\sf cm^3 \:(1 \:d.p.)\end{aligned}[/tex]
Conclusion
The surface area and volume of the prism is larger than that of the cone.
Difference between surface areas:
388.1 - 91.5 = 296.6 ≈ 300 cm²
Difference between volumes:
400 - 56.5 = 343.5 ≈ 340 cm³
Therefore:
- The prism has a surface area about 300 square centimeters larger than the cone.
- The prism has a volume about 340 cubic centimeters larger than the cone.