Pyramid AAA has a quadrilateral base, a height of 444 units, and a volume of 202020 cubic units. Pyramid BBB has the same base area, but its height is 121212 units.

Respuesta :

The answer is the volume of Pyramid B will be 60 cubic units.

Height of Pyramid [tex]$\mathbf{A}$[/tex] and Pyramid [tex]$\mathbf{B}$[/tex] are given which is as [tex]$\mathrm{h}_{\mathrm{a}}=4$[/tex] units and [tex]$h_{x}=12$[/tex] units respectively

[tex]\mathrm{S}_{\mathrm{a}} and $\mathrm{S}_{\mathrm{x}}$[/tex] are base of Pyramid [tex]$\mathbf{A}$[/tex] and Pyramid [tex]$\mathbf{B}$[/tex] respectively which are equal i.e [tex]$\mathrm{S}_{\mathrm{a}}=\mathrm{S}_{\mathrm{x}}$[/tex]

The volume of the pyramid is given by [tex]$1 / 3(\mathrm{Sh}) ; \mathrm{S}=$[/tex] base of pyramid and [tex]$\mathrm{h}=$[/tex] height of the pyramid

- Given

[tex]$\mathrm{h}_{\mathrm{a}}=4$[/tex] units

[tex]$h_{x}=12$[/tex] units [tex]$=3 h_{a}$[/tex]

[tex]$\mathrm{S}_{\mathrm{a}}=\mathrm{S}_{\mathrm{x}}$[/tex]

The volume of pyramid [tex]$\mathbf{A}=1 / 3\left(\mathrm{~S}_{a} h_{a}\right)=20$[/tex]cubic units

The volume of pyramid [tex]$\mathbf{B}=1 / 3\left(\mathrm{~S}_{\mathrm{x}} h_{\mathrm{x}}\right)=1 / 3\left(\mathrm{~S}_{\mathrm{a}}\times3 \mathrm{~h}_{\mathrm{a}}\right)=3\times\mathrm{~V}_{\mathrm{a}}=3\times 20=60$[/tex] cubic units

What is the pyramid?

  • A three-dimensional structure with a polygon at its base is referred to as a pyramid. You must be familiar with
  • This construction has a characteristic shape since each corner is connected .

To learn more about pyramids visit:

https://brainly.com/question/13057463?

#SPJ4