18. Consider the two planes given by

3x - 6y - 2z = 3, 2x + y - 2z = 2

(a) The point (x, 0, 0) is on both planes. Find x.
(b) Find a vector n normal to the first plane.
(c) Find a vector n normal to the second plane.
(d) Find a vector normal to both nā‚ and nā‚‚.
(e) Find parametric equations for the line in which the two planes intersect. ā€‹

18 Consider the two planes given by 3x 6y 2z 3 2x y 2z 2a The point x 0 0 is on both planes Find x b Find a vector n normal to the first plane c Find a vector n class=

Respuesta :

(a) If [tex](x,0,0)[/tex] lies on both planes, then

[tex]y=z=0 \implies 3x = 3 \implies \boxed{x=1}[/tex]

and at the same time

[tex]2x = 2 \implies x=1[/tex]

(b) A plane with normal vector [tex]\vec n[/tex] containing the point [tex](a,b,c)[/tex] can be written in the form

[tex]\vec n \cdot \langle x - a, y - b, z - c \rangle = 0[/tex]

Expanding the left side, we see that the components of [tex]\vec n[/tex] correspond to the coefficients of [tex]x,y,z[/tex]. So the normal vector to [tex]3x-6y-2z[/tex] is [tex]\vec n_1 = \boxed{\langle3,-6,-2\rangle}[/tex].

(c) Similarly, the normal to [tex]2x+y-2z=2[/tex] is [tex]\vec n_2 = \boxed{\langle2,1,-2\rangle}[/tex].

(d) The cross product of any two vectors [tex]\vec x[/tex] and [tex]\vec y[/tex] is perpendicular to both of the vectors. So we have

[tex]\vec n_1 \times \vec n_2 = \boxed{\langle 14, 2, 15\rangle}[/tex]

(e) Solve the two plane equations for [tex]z[/tex].

[tex]3x - 6y - 2z = 3 \implies 2z = 3x - 6y - 3[/tex]

[tex]2x + y - 2z = 2 \implies 2z = 2x + y - 2[/tex]

By substitution,

[tex]3x - 6y - 3 = 2x + y - 2 \implies x = 7y + 1[/tex]

Let [tex]y=t\in\Bbb R[/tex]. Then [tex]x=7t+1[/tex] and

[tex]2z = 3(7t+1) - 6t - 3 \implies 2z = 15t \implies z = \dfrac{15}2t[/tex]

Then the intersection can be parameterized by equations

[tex]\begin{cases} x(t) = 7t + 1 \\\\ y(t) = t \\\\ z(t) = \dfrac{15}2 t \end{cases}[/tex]

for [tex]t\in\Bbb R[/tex].

We can also set [tex]x=t[/tex] or [tex]z=t[/tex] first, then solve for the other variables in terms of the parameter [tex]t[/tex], so this is by no means a unique parameterization.

a)

[tex]3x - 6(0) - 2(0) = 3 \\ 3x = 3 \\ x = 1 \\ \\ or \\ \\ 2x + 0 - 2(0) = 2 \\ 2x = 2 \\ x = 1[/tex]

b)

[tex]n_{1} \: (3, - 6, - 2)[/tex]

c)

[tex]n_{2} \: \: (2,1, - 2)[/tex]

d)

[tex]v = n_{1} \times n_{2} [/tex]

[tex]i \: \: \: \: \: \: \: \: \: \: \: j \: \: \: \: \: \: \: \: \: k \\ 3 \: \: \: \: \: - 6 \: \: \: \: - 2 \\ 2 \: \: \: \: \: \: \: \: \: \: 1 \: \: \: \: \: - 2[/tex]

[tex]v \:(12 + 2, - ( - 6 + 4),3 + 12) \\ v \: (14,2,15)[/tex]

e)

[tex]x = 14m + 1 \\ y = 2m \\ z = 15m[/tex]