Water flows in a horizontal pipe with changing cross-sectional area. In the left side, water flows with at 3.9 m/s and its pressure is 13,500 Pa. In the right side, the pressure is 17,700 Pa. What is the ratio of the cross-sectional area of the left side to the area of the right side

Respuesta :

The ratio of the cross-sectional area of the left side to the area of the right side is 24, using Bernoulli's theorem.

Given data ,

[tex]P_{left}[/tex] = 13,500 Pa

[tex]v_{left}[/tex] = 3.9m/s

[tex]P_{right}[/tex] = 17,700Pa

According to Bernoulli's theorem;

[tex]P_{left }[/tex] + [tex]\frac{1}{2}[/tex]ρ[tex](v_{left} )^{2}[/tex] = [tex]P_{right }[/tex] + [tex]\frac{1}{2}[/tex]ρ[tex](v_{right} )^{2}[/tex]

Putting in the values in the Bernoulli's theorem we get,

13,500 + [tex]\frac{1}{2} (3.9)^{2}[/tex] = 17,700 +  [tex]\frac{1}{2}[/tex][tex](v_{right} )^{2}[/tex]

13,500 - 17,700 +  [tex]\frac{1}{2} (3.9)^{2}[/tex] =  [tex]\frac{1}{2}[/tex][tex](v_{right} )^{2}[/tex]

-4200  +  [tex]\frac{1}{2} (3.9)^{2}[/tex] =  [tex]\frac{1}{2}[/tex][tex](v_{right} )^{2}[/tex]

-4200 + 7.605 =  [tex]\frac{1}{2}[/tex][tex](v_{right} )^{2}[/tex]

91.5m/s =   [tex]v_{right}[/tex]

also, fluid flow in pipes is given as ,

[tex]a_{left} v_{left}= a_{right} v_{right}[/tex]

[tex]\frac{a_{left} }{a_{right} } = \frac{91.5}{3.9}[/tex]

[tex]\frac{aleft}{aright} = 24[/tex]

Therefore, the ratio of the cross-sectional area of the left side to the area of the right side is 24, using Bernoulli's theorem.

Learn more about Bernoulli's theorem here:

https://brainly.com/question/13098748

#SPJ4