Answer:
1. Vertical shrink by a factor of ¹/₅
2. Right 5
3. Up 5
Step-by-step explanation:
Transformations of Graphs (functions) is the process by which a function is moved or resized to produce a variation of the original (parent) function.
Transformations
For a > 0
[tex]f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}[/tex]
[tex]f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}[/tex]
[tex]f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}[/tex]
[tex]f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}[/tex]
[tex]y=a\:f(x) \implies f(x) \: \textsf{stretched parallel to the y-axis (vertically) by a factor of}\:a[/tex]
[tex]y=f(ax) \implies f(x) \: \textsf{stretched parallel to the x-axis (horizontally) by a factor of} \: \dfrac{1}{a}[/tex]
[tex]y=-f(x) \implies f(x) \: \textsf{reflected in the} \: x \textsf{-axis}[/tex]
[tex]y=f(-x) \implies f(x) \: \textsf{reflected in the} \: y \textsf{-axis}[/tex]
Identify the transformations that take the parent function to the given function.
Question 1
[tex]\textsf{Parent function}: \quad f(x)=x^3[/tex]
[tex]\textsf{Given function}: \quad f(x)=\dfrac{1}{5}x^3[/tex]
Comparing the parent function with the given function, we can see that the parent function has been multiplied by ¹/₅.
Therefore, the transformation is:
[tex]y=\dfrac{1}{5}\:f(x) \implies f(x) \: \textsf{stretched parallel to the y-axis (vertically) by a factor of}\:\dfrac{1}{5}[/tex]
As 0 < a < 1, the transformation visually is a compression in the y-direction, so we can also say: Vertical shrink by a factor of ¹/₅
Question 2
[tex]\textsf{Parent function}: \quad f(x)=x^3[/tex]
[tex]\textsf{Given function}: \quad f(x)=(x-5)^3[/tex]
Comparing the parent function with the given function, we can see that 5 has been subtracted from the x-value of the parent function.
Therefore, the transformation is:
[tex]f(x-5) \implies f(x) \: \textsf{translated}\:5\:\textsf{units right}[/tex]
Question 3
[tex]\textsf{Parent function}: \quad f(x)=x^3[/tex]
[tex]\textsf{Given function}: \quad f(x)=x^3+5[/tex]
Comparing the parent function with the given function, we can see that 5 has been added to the parent function.
Therefore, the transformation is:
[tex]f(x)+5 \implies f(x) \: \textsf{translated}\:5\:\textsf{units up}[/tex]
Learn more about graph transformations here:
https://brainly.com/question/27845947