Respuesta :

The equivalent expression of [tex]\frac{2^4}{\sqrt[3]{xy}}[/tex] is [tex]\frac{\sqrt[3]{\frac{2^{12}}{xy}}}[/tex]

How to rewrite the expression?

The expression is given as:

[tex]\frac{2^4}{\sqrt[3]{xy}}[/tex]

Multiply 4 by 1

[tex]\frac{2^{4 * 1}}{\sqrt[3]{xy}}[/tex]

Express 1 as 3/3

[tex]\frac{2^{4 * 3/3}}{\sqrt[3]{xy}}[/tex]

Evaluate the product

[tex]\frac{2^{12 * 1/3}}{\sqrt[3]{xy}}[/tex]

Apply the following law of indices

[tex]a^\frac 1n = \sqrt[n]{a}[/tex]

So, we have:

[tex]\frac{\sqrt[3]{2}^{12}}{\sqrt[3]{xy}}[/tex]

The numerator and the denominator have the same root

So, we have:

[tex]\frac{\sqrt[3]{\frac{2^{12}}{xy}}}[/tex]

Hence, the equivalent expression of [tex]\frac{2^4}{\sqrt[3]{xy}}[/tex] is [tex]\frac{\sqrt[3]{\frac{2^{12}}{xy}}}[/tex]

Read more about equivalent expressions at:

https://brainly.com/question/24242989

#SPJ1