Respuesta :

[tex]C_{ij}[/tex] is the entry of [tex]C[/tex] in row [tex]i[/tex] and column [tex]j[/tex]. [tex]C[/tex] has 3 rows and 2 columns, so

[tex]C_{11} = \dfrac{|-2\times1+3\times1|}2 = \dfrac{|-2+3|}2 = \dfrac{|-1|}2 = \dfrac12[/tex]

[tex]C_{12} = \dfrac{|-2\times1+3\times2|}2 = \dfrac{|-2+6|}2 = \dfrac{|4|}2 = 2[/tex]

[tex]C_{21} = \dfrac{|-2\times2+3\times1|}2 = \dfrac{|-4+3|}2 = \dfrac{|-1|}2 = \dfrac12[/tex]

[tex]C_{22} = \dfrac{|-2\times2+3\times2|}2 = \dfrac{|-4+6|}2 = \dfrac{|2|}2 = 1[/tex]

[tex]C_{31} = \dfrac{|-2\times3+3\times1|}2 = \dfrac{|-6+3|}2 = \dfrac{|-3|}2 = \dfrac32[/tex]

[tex]C_{32} = \dfrac{|-2\times3+3\times2|}2 = \dfrac{|-6+6|}2 = \dfrac{|0|}2 = 0[/tex]

Then the matrix is

[tex]C = \begin{bmatrix}\dfrac12 & 2 \\\\ \dfrac12 & 1 \\\\ \dfrac32 & 0\end{bmatrix} = \dfrac12 \begin{bmatrix}1&4\\1&2\\3&0\end{bmatrix}[/tex]