Respuesta :
Hello !
[tex]\begin{cases} 5x+3y - 35&=0 \\ 3x - 4y &= - 8 \end{cases}[/tex]
[tex]\Leftrightarrow\begin{cases} 5x+3y &=35 \\ 3x - 4y &= - 8 \end{cases}[/tex]
[tex]\Leftrightarrow AX = B [/tex]
With
[tex]A=\left[\begin{array}{ccc}5&3\\3& - 4\end{array}\right] [/tex]
[tex]X=\left[\begin{array}{ccc}x\\y\\\end{array}\right] [/tex]
[tex]B=\left[\begin{array}{ccc}35\\ - 8\\\end{array}\right] [/tex]
The solution is given by [tex]X=A^{-1}B[/tex].
[tex]X= {\left[\begin{array}{ccc}5&3\\3& - 4\end{array}\right] }^{ - 1} \left[\begin{array}{ccc}35\\ - 8\\\end{array}\right] [/tex]
[tex]X=\left[\begin{array}{ccc}4\\ 5\\\end{array}\right] [/tex]
The point of intersection between the lines is (4;5).
Have a nice day
Answer:
Point of intersection (4,5)
Step-by-step explanation:
5x + 3y - 35 = 0
3x - 4y = -8
⇒ 5x + 3y = 35
3x - 4y = -8
Matrix A will be formed by the coefficient of x and y. Matrix B will be formed by the constants.
[tex]\sf A = \left[\begin{array}{cc}5&3\\3&-4\end{array}\right][/tex]
[tex]\sf B = \left[\begin{array}{c}35&-8\end{array}\right][/tex]
AX = B
[tex]\sf X =A^{-1}B[/tex]
[tex]Now ,\ we \ have \ to \ find \ A^{-1}[/tex],
Find the workout in the document attached.
