Respuesta :

Answer:

140 square units

Explanation:

[tex]\sf \dfrac{area \ of \ ABC}{area \ of \ XYZ} = (\dfrac{BC}{YZ})^2[/tex]

[tex]\rule{95}{1}[/tex]

[tex]\rightarrow \sf \dfrac{100}{XYZ} = (\dfrac{5}{6} )^2[/tex]

[tex]\rightarrow \sf \dfrac{100}{XYZ} = \dfrac{25}{36}[/tex]

[tex]\rightarrow \sf XYZ = \dfrac{100(36)}{25}[/tex]

[tex]\rightarrow \sf XYZ = 144[/tex]

[tex]\rightarrow \sf XYZ = 140 \quad (rounded)[/tex]

Remember that

Area of two triangles is directly proportional to the square of their sides

So

Let the unknown area be x

[tex]\\ \rm\Rrightarrow \dfrac{x}{100}=\dfrac{6^2}{5^2}

[tex]\\ \rm\Rrightarrow \dfrac{x}{100}=\dfrac{36}{25}[/tex]

[tex]\\ \rm\Rrightarrow 25x=3600[/tex]

[tex]\\ \rm\Rrightarrow x=144units^2[/tex]

A is most approximately equal