Respuesta :

Answer:

Step-by-step explanation:

[tex]f(x)=\frac{x^{2} - 8 x + 12}{x - 6}[/tex]

VERTICAL ASYMPTOTES

The line x = L is a vertical asymptote of the function [tex]y=\frac{x^{2} - 8 x + 12}{x - 6}[/tex]

, if the limit of the function (one-sided) at this point is infinite.

In other words, it means that possible points are points where the denominator equals 0 or doesn't exist.

So, find the points where the denominator equals 0 and check them.

x=6, check:

[tex]\lim_{x \to 6^+}\left(x - 2\right)=4[/tex]

Since the limit is finite, check another limit.

[tex]\lim_{x \to 6^-}\left(\frac{x^{2} - 8 x + 12}{x - 6}\right)=4[/tex]

Since the limit is finite, then x=6 is not a vertical asymptote.

HORIZONTAL ASYMPTOTES

Line y=L is a horizontal asymptote of the function y=f(x), if either [tex]\lim_{x \to \infty} f{\left(x \right)}=L[/tex]

or [tex]\lim_{x \to -\infty} f{\left(x \right)}=L[/tex] , and L is finite.

Calculate the limits:

[tex]\lim_{x \to \infty}\left(\frac{x^{2} - 8 x + 12}{x - 6}\right)=\infty[/tex]

[tex]\lim_{x \to -\infty}\left(\frac{x^{2} - 8 x + 12}{x - 6}\right)=-\infty[/tex]

Thus, there are no horizontal asymptotes.

SLANT ASYMPTOTES

Do polynomial long division [tex]\frac{x^{2} - 8 x + 12}{x - 6}=x - 2[/tex] Thus, the slant asymptote is y=x−2.

Answer

No vertical asymptotes.

No horizontal asymptotes.

Slant asymptote: y=x−2