15. In trapezoid ABCD, AB - 13.BC -15, and CD-13. Altitudes BF and CE are both drawn to side AD.
B
15
с
(a) If altitude BF has a length of 12, then find the
perimeter of trapezoid ABCD.
13 points)
13
13
A
F
E
D
(b) Find mZBCD to the nearest tenth of a degree,
13 points)

15 In trapezoid ABCD AB 13BC 15 and CD13 Altitudes BF and CE are both drawn to side AD B 15 с a If altitude BF has a length of 12 then find the perimeter of tra class=

Respuesta :

Check the picture below, so the perimeter of the trapezoid is really 13 + 15 + 13 + x + 15 + x, or just 56 + 2x.

[tex]\textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \sqrt{c^2-a^2}=b \qquad \begin{cases} c=\stackrel{hypotenuse}{13}\\ a=\stackrel{adjacent}{12}\\ b=\stackrel{opposite}{x}\\ \end{cases}[/tex]

[tex]\sqrt{13^2 - 12^2}=b\implies \sqrt{169 - 144}=b\implies \sqrt{25}=b\implies 5=b \\\\[-0.35em] ~\dotfill\\\\ ~\hfill \stackrel{perimeter}{56+2(5)\implies 66}~\hfill ~ \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ cos(\theta)=\cfrac{\stackrel{adjacent}{12}}{\underset{hypotenuse}{13}}\implies \theta =cos^{-1}\left( \cfrac{12}{13} \right)\implies \theta \approx 22.62^o \\\\[-0.35em] ~\dotfill\\\\ ~\hfill \stackrel{\measuredangle BCD}{\theta +90^o~~\approx 112.62^o}~\hfill[/tex]

Ver imagen jdoe0001