Respuesta :

Answer:

See below ~

Step-by-step explanation:

Given

  1. Area = 490 units²
  2. Width = 5x
  3. Length = 8x

Now, we know that : length x width = area

Using the given values

  • (8x)(5x) = 490
  • 40x² = 490
  • x² = 490/40
  • x² = 49/4
  • x = √49/4
  • x = 7/2 = 3.5

Length (l) = 8x = 8(3.5) = 28 units

Width (w) = 5x = 5(3.5) = 17.5 units

Given :

Area of rectangle = 490 units²

length = 8x

width = 5x

As we know

[tex]\:\bf\boxed{{Area\:of\:rectangle\:=\:length\:}x\:{width}}[/tex]

So,

Area of rectangle = l x w

=> 490 units² = [tex]\:\mathsf{8x\: x\: 5x}[/tex]

=> 490 = [tex]\:\mathsf{40x²}[/tex]

=> [tex]\:\mathsf{\frac{490}{40}}[/tex] = x²

=> x² = [tex]\:\mathsf{\frac{49}{4}}[/tex]

=> x = [tex]\:\mathsf{\sqrt{\frac{49}{4}}}[/tex]

=> x = [tex]\:\mathsf{\frac{7}{2}}[/tex]

=> x = [tex]\:\mathsf{3.5}[/tex]

Now,

length = 8x = 8 x 3.5 = 28 units

width = 5x = 5 x 3.5 = 17.5 units

Therefore the required length and width of the rectangle are 28 units and 17.5 units.

Hope this helps!