Respuesta :

Answer:

x = 1.5[tex]\sqrt{3}[/tex]

Step-by-step explanation:

using the sine ratio in the right triangle and the exact value

sin60° = [tex]\frac{\sqrt{3} }{2}[/tex] , then

sin60° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{x}{3}[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] ( cross- multiply )

2x = 3[tex]\sqrt{3}[/tex] ( divide both sides by 2 )

x = 1.5[tex]\sqrt{3}[/tex]

According to diagram, this triangle is a right angled triangle.

So we can use trigonometric ratio to find the value of x

Now,

[tex]\:\bf{sin 60° = \frac{x}{3}}[/tex]

=> [tex]\:\sf{\frac{\sqrt(3)}{2}= \frac{x}{3}}[/tex]

=> [tex]\:\sf{\frac{3\sqrt(3)}{2}= x}[/tex]

Hope this helps you!