Respuesta :

Answer:  x = 0.18 and x = -1.85

Work Shown:

[tex]x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}\\\\x = \frac{-5\pm\sqrt{(5)^2-4(3)(-1)}}{2(3)}\\\\x = \frac{-5\pm\sqrt{37}}{6}\\\\x \approx \frac{-5\pm6.08276253}{6}\\\\x \approx \frac{-5+6.08276253}{6} \ \text{ or } \ x \approx \frac{-5-6.08276253}{6}\\\\x \approx \frac{1.08276253}{6} \ \text{ or } \ x \approx \frac{-11.08276253}{6}\\\\x \approx 0.18046042 \ \text{ or } \ x \approx -1.84712707\\\\x \approx 0.18 \ \text{ or } \ x \approx -1.85\\\\[/tex]

I used the quadratic formula.

Visual confirmation is shown below. The solutions are the x coordinates of the x intercepts, aka roots. GeoGebra is another tool you can use if you prefer that over Desmos. Both are free apps.

Ver imagen jimthompson5910