Respuesta :

The subfuctions of the piecewise function f(x) are linear functions

The matching values of the domain values with the range values are

x       f(x)

-4      -7

-2      -8

0       -2

2       4

4      -4

8     -12

How to evaluate the piece-wise function?

The function is given as:

[tex]f(x) = \left[\begin{array}{cc}x-3&x\le-4\\3x-2&-4 < x\le 2\\-2x+4&x > 2\end{array}\right][/tex]

The above definition means that:

  • All x values less than or equal to -4 would be evaluated using f(x) = x - 3
  • All x values greater than -4 but less than or equal to 2 would be evaluated using f(x) = 3x - 2
  • All x values greater than 2 would be evaluated using f(x) = -2x + 4

Using the above highligts, we have:

f(-4) = -4 - 3 = -7

f(-2) = 3(-2) - 2 = -8

f(0) = 3(0) - 2 = -2

f(2) = 3(2) - 2 = 4

f(4) = -2 * 4 + 4 = -4

f(8) = -2 * 8 + 4 = -12

So, the matching values are

x       f(x)

-4      -7

-2      -8

0       -2

2       4

4      -4

8     -12

Read more about piecewise functions at:

https://brainly.com/question/10733545