i would really like some help, factoring trinomials if you want an extra 50-100 points you could help with a previous question on my profile lol

Answer:
[tex]g) \left(5x-2\right)\left(3x+2\right)[/tex]
[tex]h)2\left(8a-9\right)\left(a-2\right)[/tex]
[tex]i)3\left(21n^2+42n+16\right)[/tex]
Step-by-step explanation:
Starting with g) [tex]15^2+4x-4[/tex]
Break the expression into group
[tex]=\left(15x^2-6x\right)+\left(10x-4\right)[/tex]
Now, Factor out [tex]3x[/tex] from [tex]15x^2-6x[/tex] which is now is [tex]3x(5x-2)[/tex]
Next, Facotr out [tex]2[/tex] from [tex]10x-4[/tex] which is now is [tex]2(5x-2)[/tex]
Thus,
[tex]=3x\left(5x-2\right)+2\left(5x-2\right)[/tex]
Factor common term 5x -2
[tex]\left(5x-2\right)\left(3x+2\right)[/tex]
-------------------------------------------------------------------------------------------------------------
Next we have [tex]h)16a^2-50a+36[/tex]
Factor out common term thus we have [tex]2(8a^2-25a+18)[/tex]
Factor again: [tex]8a^2-25a+18[/tex] now turn into [tex](8a-9)(a-2)[/tex]
[tex]=2\left(8a-9\right)\left(a-2\right)[/tex]
-------------------------------------------------------------------------------------------------------------
Lastly we have [tex]i)63n^2+126n+48[/tex]
Rewrite the following:
63 as 3 * 21
126 as 2 * 42
48 as 3 * 16
[tex]63n^2+126n+48[/tex]
Now cut out common term:
[tex]=3\left(21n^2+42n+16\right)[/tex]
-------------------------------------------------------------------------------------------------------------
~lenvy~
Answer:
(g) [tex](5x-2)(3x+2)[/tex]
(h) [tex](16a-18)(a-2)[/tex]
(i) [tex]3(21n^2+42n+16)[/tex]
Step-by-step explanation:
To factor a quadratic in the form [tex]ax^2+bx+c[/tex]
Question (g)
[tex]15x^2+4x-4[/tex]
[tex]\implies ac=15 \cdot -4=-60[/tex]
[tex]\implies d+e=4[/tex]
Factors of 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60
Therefore, the two numbers (d and e) that multiply to -60 and sum to 4 are:
10 and -6
Rewrite [tex]4x[/tex] as [tex]+10x-6x[/tex]:
[tex]\implies 15x^2+10x-6x-4[/tex]
Factories first two terms and last two terms separately:
[tex]\implies 5x(3x+2)-2(3x+2)[/tex]
Factor out common term [tex](3x+2)[/tex]:
[tex]\implies (5x-2)(3x+2)[/tex]
Question (h)
[tex]16a^2-50a+36[/tex]
[tex]\implies ac=16 \cdot 36=576[/tex]
[tex]\implies d+e=-50[/tex]
Factors of 576: 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 64, 72, 96, 144, 192, 288, 576
Therefore, the two numbers that multiply to 576 and sum to -50 are:
-32 and -18
Rewrite [tex]-50a[/tex] as [tex]-32a-18a[/tex]:
[tex]\implies 16a^2-32a-18a+36[/tex]
Factories first two terms and last two terms separately:
[tex]\implies 16a(a-2)-18(a-2)[/tex]
Factor out common term [tex](a-2)[/tex]:
[tex]\implies (16a-18)(a-2)[/tex]
Question (i)
[tex]63n^2+126n+48[/tex]
Factor out common term 3:
[tex]\implies 3(21n^2+42n+16)[/tex]
This cannot be factored any further.