Answer:
[tex]\sf \bold{\begin{pmatrix}7&-12&6\\ 3&-2&7\\ -12&-1&2\\ 7&3&-2\end{pmatrix}}[/tex]
Explanation:
[tex]\Longrightarrow \ \sf Give n \ A = \sf \bold{\begin{pmatrix}2&-9&8\\ 4&2&-1\\ -5&-3&7\\ 4&8&-4\end{pmatrix}}[/tex]
[tex]\Longrightarrow \ \sf Given \ B = \bold{\begin{pmatrix}-5&3&2\\ 1&4&-8\\ 7&-2&5\\ -3&5&-2\end{pmatrix}}[/tex]
Solve:
[tex]\sf A - B = \begin{pmatrix}2&-9&8\\ \:4&2&-1\\ \:-5&-3&7\\ \:4&8&-4\end{pmatrix}- \begin{pmatrix}-5&3&2\\ 1&4&-8\\ 7&-2&5\\ -3&5&-2\end{pmatrix}[/tex]
subtract the elements in matching positions
[tex]\sf A - B = \begin{pmatrix}2-\left(-5\right)&\left(-9\right)-3&8-2\\ 4-1&2-4&\left(-1\right)-\left(-8\right)\\ \left(-5\right)-7&\left(-3\right)-\left(-2\right)&7-5\\ 4-\left(-3\right)&8-5&\left(-4\right)-\left(-2\right)\end{pmatrix}[/tex]
Final Outcome
[tex]\sf \bold{\begin{pmatrix}7&-12&6\\ 3&-2&7\\ -12&-1&2\\ 7&3&-2\end{pmatrix}}[/tex]