Respuesta :

Answer:

(3, -1)

Step-by-step explanation:

Given

  • 4x + 5y = 7
  • y = 3x - 10

Subbing the value of y

  • 4x + 5(3x - 10) = 7
  • 4x + 15x - 50 = 7
  • 19x = 57
  • x = 3
  • y = 3(3) - 10
  • y = 9 - 10
  • y = -1
  • Solution is (3, -1)

Answer:

  • x = 3
  • y = -1

Solution: (3, -1)

Step-by-step explanation:

Given equations:

  • [tex]4x + 5y = 7[/tex]
  • [tex]y = 3x - 10[/tex]

Step-1: Reorganize the equations with "y" on the L.H.S

[tex]\rightarrow \left \{ {{4x + 5y = 7} \atop {y = 3x - 10}} \right.[/tex]

[tex]\rightarrow \left \{ {{5y = 7 - 4x} \atop {y = 3x - 10}} \right.[/tex]

[tex]\rightarrow \left \{ {{5y = 7 - 4x} \atop y =-10 + 3x}} \right.[/tex]

Step-2: Make the x-variables the same on both equations

[tex]\rightarrow \left \{ {{3(5y = 7 - 4x)} \atop 4(y =-10 + 3x)}} \right.[/tex]

[tex]\rightarrow \left \{ {{15y = 21 - 12x} \atop 4y =-40 + 12x}} \right.[/tex]

Step-3: Add the equations

[tex]\rightarrow (15y + 4y) = (21 - 40) + (-12x + 12x)[/tex]

[tex]\rightarrow 19y = -19[/tex]

Step-4: Divide both sides by 19

[tex]\rightarrow \dfrac{19y}{19} = \dfrac{-19}{19}[/tex]

[tex]\rightarrow y = -1[/tex]

Step-5: Substitute the value of y into any equation

[tex]\rightarrow y = 3x - 10[/tex]

[tex]\rightarrow -1 = 3x - 10[/tex]

Step-6: Simplify the equation

[tex]\rightarrow -1 + 10 = 3x[/tex]

[tex]\rightarrow9= 3x[/tex]

Step-7: Divide 3 both sides

[tex]\rightarrow \dfrac{9}{3} = \dfrac{3x}{3}[/tex]

[tex]\rightarrow x = 3[/tex]

(Optional) Step-8: Convert the solution(s) into (x, y) form

[tex]\rightarrow (x, y) \rightarrow (x = 3; y=-1) \rightarrow (3,-1)[/tex]

Thus, the value of x and y is 3 and -1. The solution is (3, -1).