Simplify the expression.
(m^-1 m^5/m^-2)^-3
a)- 3m^4/m^2
b)-m^216
c)m^18
d)1/m^18

Answer:
[tex]D)\frac{1}{m^{18} }[/tex]
Step-by-step explanation:
Multiply [tex]m^{-1}[/tex] by [tex]m^{5}[/tex] by adding the exponents.
Use the power rule [tex]a^{m} a^{n} =a^{m+n}[/tex] to combine exponents.
[tex](\frac{m^{-1+5} }{m^{-2} } )^{-3} \\[/tex]
Add -1 and 5.
[tex](\frac{m^{4} }{m^{-2} } )^{-3}[/tex]
Move [tex]m^{-2}[/tex] to the numerator using the negative exponent rule [tex]\frac{1}{b^{-n} } =b^{n}[/tex].
[tex](m^{4} m^{2} )[/tex]
Multiply [tex]m^{4}[/tex] by [tex]m^{2}[/tex] by adding the exponents.
Use the power rule [tex]a^{m} a^{n} =a^{m+n}[/tex] to combine exponents.
[tex](m^{4+2} )^{-3}[/tex]
Add 4 and 2.
[tex](m^{6} )^{-3}[/tex]
Multiply the exponents in [tex](m^6)^{-3}[/tex]
Apply the rule and multiply exponents, [tex](a^m)^n=a^{mn}[/tex].
[tex]m^{6*-3}[/tex]
Multiply 6 by -3.
[tex]m^{-18}[/tex]
Rewrite the expression using the negative exponent rule [tex]b^{-n} =\frac{1}{b^{n} }[/tex].
[tex]\frac{1}{m^{18} }[/tex]