Respuesta :

d) 1/m^18

Explanation:
(m^-2/m-1m5)^3
m^-6/m^-3m^15
1/m^6 / m^15/m^3
1/m^6 / m^12
1/m^6 (1/m^12)
1/m^18

let me know if you want clarification

Answer:

[tex]D)\frac{1}{m^{18} }[/tex]

Step-by-step explanation:

Multiply [tex]m^{-1}[/tex] by [tex]m^{5}[/tex] by adding the exponents.

Use the power rule [tex]a^{m} a^{n} =a^{m+n}[/tex] to combine exponents.

[tex](\frac{m^{-1+5} }{m^{-2} } )^{-3} \\[/tex]

Add -1 and 5.

[tex](\frac{m^{4} }{m^{-2} } )^{-3}[/tex]

Move [tex]m^{-2}[/tex] to the numerator using the negative exponent rule [tex]\frac{1}{b^{-n} } =b^{n}[/tex].

[tex](m^{4} m^{2} )[/tex]

Multiply [tex]m^{4}[/tex] by [tex]m^{2}[/tex] by adding the exponents.

Use the power rule [tex]a^{m} a^{n} =a^{m+n}[/tex] to combine exponents.

[tex](m^{4+2} )^{-3}[/tex]

Add 4 and 2.

[tex](m^{6} )^{-3}[/tex]

Multiply the exponents in [tex](m^6)^{-3}[/tex]

Apply the rule and multiply exponents, [tex](a^m)^n=a^{mn}[/tex].

[tex]m^{6*-3}[/tex]

Multiply 6 by -3.

[tex]m^{-18}[/tex]

Rewrite the expression using the negative exponent rule [tex]b^{-n} =\frac{1}{b^{n} }[/tex].

[tex]\frac{1}{m^{18} }[/tex]