Answer:
-1
Step-by-step explanation:
Given function: [tex]f(x)=-x^2+4x-3[/tex]
[tex]\implies f(-2)=-(-2)^2+4(-2)-3=-15[/tex]
[tex]\implies f(7)=-(7)^2+4(7)-3=-24[/tex]
[tex]\textsf{Average rate of change}=\dfrac{f(b)-f(a)}{b-a}\quad\textsf{for}\:a\leq x\leq b[/tex]
Therefore, average rate of change over the interval -2 ≤ x ≤ 7
[tex]\implies \textsf{Average rate of change}=\dfrac{f(7)-f(-2)}{7-(-2)}=\dfrac{-24-(-15)}{9}=-1[/tex]