Respuesta :

Answer: Approximately 8.5 units

Step-by-step explanation:

Substitute M(2, -2) and N(8, 4) for the coordinates in the distance formula and solve for d

[tex]d = \sqrt {\left( {x_1 - x_2 } \right)^2 + \left( {y_1 - y_2 } \right)^2 }[/tex]

[tex]d = \sqrt {\left( {8-2 } \right)^2 + \left( {4-(-2)} \right)^2 }[/tex]

[tex]d = \sqrt {\left( {6 } \right)^2 + \left( {6} \right)^2 }[/tex]

[tex]d = \sqrt {\left( {36 } \right) + \left( {36} \right) }[/tex]

[tex]d = \sqrt {72}[/tex]

[tex]d \approx 8.5\hspace2 units[/tex]

Therefore the length of [tex]\overline{MN}[/tex] is approximately 8.5 units