Respuesta :
Given :
- The length of the sides of the triangle are in the ratio 5:8:10 .
- The Perimeter of the Triangle is 115 cm.
To Find :
- The length of the sides of the triangle.
Solution :
Let us assume the sides be 5x cm, 8x cm and 10x cm.
We know,
[tex]\qquad{ \bold{ \pmb{Sum \: of \: all \: sides \: of \: the \: triangle = Perimeter_{(Triangle)}}}}[/tex]
So, Substituting the values :
[tex]\qquad { \dashrightarrow{ \sf{5x + 8x + 10x = 115}}}[/tex]
[tex]\qquad { \dashrightarrow{ \sf{23x= 115}}}[/tex]
[tex]\qquad { \dashrightarrow{ \sf{ \dfrac{23x}{23} = \dfrac{115}{23} }}}[/tex]
[tex]\qquad { \dashrightarrow{ \bf{ x = 5 }}}[/tex]
Therefore,
The length of the sides of the triangle are :
[tex]\qquad { \dashrightarrow{ \sf{ 5x \: cm= 5 \times 5 \: cm = \bf \: 25\: cm }}}[/tex]
[tex]\qquad { \dashrightarrow{ \sf{ 8x \: cm= 8 \times 5 \: cm = \bf \: 40 \: cm }}}[/tex]
[tex]\qquad { \dashrightarrow{ \sf{ 10x \: cm= 10 \times 5 \: cm = \bf \: 50 \: cm }}}[/tex]
Step-by-step explanation:
Given:-
Ratio of sides of triangle is 5:8:10 , with perimeter of 115cm.
To Find :-
Measurement of each side
Solution :-
let the each side be 5x , 8x , 10x respectively
we know that ,
perimeter of triangle = sum of all sides
putting the known values ,
115cm = 5x + 8x + 10x
115/23 = x
5 = x
putting the value of x we get ,
each side is 25cm , 40cm , 50cm