You should know that
p ⇒ q ≡ ¬p ∨ q
so that
p ⇒ (q ∧ r) ≡ ¬p ∨ (q ∧ r)
Then making the truth table is simple:
[tex]\begin{array}{cccccc} p & q & r & \neg p & q \land r & p \implies (q\land r) \\ T & T & T & F & T & T \\ T & T & F & F & F & F \\ T & F & T & F & F & F \\ T & F & F & F & F & F \\ F & T & T & T & T & T \\ F & T & F & T & F & T \\ F & F & T & T & F & T \\ F & F & F & T & F & T \end{array}[/tex]