Respuesta :
Simplify
[tex]\\ \rm\longmapsto y=(x-20)^2+5[/tex]
[tex]\\ \rm\longmapsto y=x^2-40x+405[/tex]
Graph attached
- No real zeros

Answer:
no real zeros
Step-by-step explanation:
We are given the following quadratic function:
[tex]y = {(x - 20)}^{2} + 5[/tex]
firstly simplify it to standard form which is
[tex]y = {x}^{2} -40x + 405[/tex]
To figure out the real zeros, set y to 0:
[tex] {x}^{2} - 40x + 405 = 0[/tex]
recall that,a quadratic equations has real zeros in case its discriminant is greater than or equal to 0, therefore
- b²-4ac≥0⇒real roots
consider,
- a=1
- b=-40
- c=405
now substitute:
[tex] { (- 40)}^{2} - 4(1)(405) \stackrel{ ? }{ \geq}0[/tex]
simplifying yields:
[tex] 1600 - 1620 \stackrel{ ? }{ \geq}0 \\ - 20 \ngeq 0[/tex]
hence, The function has no real zeros