Respuesta :

Answer:

[tex]\frac{x^2}{12}-\frac{y^2}{4}=1[/tex]

Step-by-step explanation:

Since our foci are located on the x-axis, then our major axis is going to be the horizontal transverse axis of the hyperbola:

Formula for hyperbola with horizontal transverse axis centered at origin

  • [tex]\frac{x^2}{a^2}-\frac{y^2}{b^2}=1[/tex]
  • Directrices -> [tex]x=\pm\frac{a^2}{c}[/tex]
  • Foci -> [tex](\pm c,0)[/tex] where [tex]a^2+b^2=c^2[/tex]
  • [tex]a>b[/tex]

Since we are given our directrices of [tex]x=\pm3[/tex] and foci of [tex](\pm4,0)[/tex], then we can set up the directrices equation to solve for [tex]a^2[/tex]:

[tex]x=\pm\frac{a^2}{c}\\ \\\pm3=\pm\frac{a^2}{4}\\ \\12=a^2[/tex]

Now we can determine [tex]b^2[/tex] to complete our equation for the hyperbola:

[tex]a^2+b^2=c^2\\\\12+b^2=4^2\\\\12+b^2=16\\\\b^2=4[/tex]

Therefore, our equation for our hyperbola is [tex]\frac{x^2}{12}-\frac{y^2}{4}=1[/tex]

Ver imagen goddessboi