Find the area of the given figure which have all the squares corners.

Answer:
area of the given figure: 58 m²
Explanation:
area of rectangle: length * width
total area:
( 2 * 5 + 12 * 4 )
58 m²
Answer:
The area of the given figure is 58 m².
Step-by-step explanation:
Dividing the given figure into two parts :
———————————————————————
Firstly, finding the area of bigger rectangle by substituting the values in the formula :
[tex]\longrightarrow{\pmb{\sf{A_{(Rectangle)} = l \times b}}}[/tex]
[tex]\begin{gathered} \qquad\longrightarrow{\sf{A_{(Rectangle)} = l \times b}}\\\\\qquad{\longrightarrow{\sf{A_{(Rectangle)} = 12\times 4}}}\\\\\qquad{\longrightarrow{\sf{A_{(Rectangle)} =48}}}\\\\\qquad{\star{\underline{\boxed{\sf{\pink{A_{(Rectangle)} =48 \: {m}^{2}}}}}}} \end{gathered}[/tex]
Hence, the area of bigger rectangle is 48 m².
———————————————————————
Secondly, finding the area of smaller rectangle by substituting the values in formula :
[tex]\longrightarrow{\pmb{\sf{A_{(Rectangle)} = l \times b}}}[/tex]
[tex]\begin{gathered} \qquad\longrightarrow{\sf{A_{(Rectangle)} = l \times b}}\\\\\qquad{\longrightarrow{\sf{A_{(Rectangle)} = 5\times 2}}}\\\\\qquad{\longrightarrow{\sf{A_{(Rectangle)} =10}}}\\\\\qquad{\star{\underline{\boxed{\sf{\purple{A_{(Rectangle)} =10 \: {m}^{2}}}}}}} \end{gathered}[/tex]
Hence, the area of smaller rectangle is 10 m².
———————————————————————
Now, finding the total area of given figure by substituting the values in the formula :
[tex]\longrightarrow{\pmb{\sf{Total \: Area = A_{(Big)} + A_{(Small)}}}}[/tex]
[tex] \begin{gathered} \qquad{\longrightarrow{\sf{Total \: Area = A_{(Big)} + A_{(Small)}}}} \\ \\ \quad{\longrightarrow{\sf{Total \: Area = 48 + 10}}} \\ \\ \quad{\longrightarrow{\sf{Total \: Area = 58}}} \\ \\ \quad{\star{\underline{\boxed{\sf{\red{Total \: Area =58\: {m}^{2}}}}}}} \end{gathered}[/tex]
Hence, the total area of the given figure is 58 m².
[tex]\rule{300}{2.5}[/tex]